The Time-Course of Acute Changes in Corticospinal Excitability, Intra-Cortical Inhibition and Facilitation Following a Single-Session Heavy Strength Training of the Biceps Brachii

نویسندگان

  • Christopher Latella
  • Ashlee M. Hendy
  • Alan J. Pearce
  • Dan VanderWesthuizen
  • Wei-Peng Teo
چکیده

Objective: The current understanding of acute neurophysiological responses to resistance training remains unclear. Therefore, we aimed to compare the time-course of acute corticospinal responses following a single-session heavy strength training (HST) of the biceps brachii (BB) muscle and provide quantifiable evidence based on the super-compensation model in an applied setting. Methods: Fourteen participants completed a counter-balanced, cross-over study that consisted of a single HST session (5 sets × 3 repetition maximum [RM]) of the BB and a control session (CON). Single- and paired-pulse transcranial magnetic stimulation (TMS) was used to measure changes in motor-evoked potential (MEP) amplitude, intra-cortical facilitation (ICF), short-interval intra-cortical inhibition (SICI) and long-interval intra-cortical inhibition (LICI). Additionally, maximal muscle compound wave (MMAX) and maximal voluntary isometric contraction (MVIC) of the BB were taken. All measures were taken at baseline, immediately post and at 10, 20, 30 min and 1, 2, 6, 24, 48 and 72 h post-training. Results: A significant reduction in MEP amplitude was observed immediately post training (P = 0.001), while MVIC (P < 0.001) and MMAX (P = 0.047) were reduced for up to 30 min post-training. An increase in MVIC (p < 0.001) and MMAX (p = 0.047) was observed at 6 h, while an increase in MEP amplitude (p = 0.014) was only observed at 48 and 72 h. No changes in SICI, ICF and LICI were observed. Conclusion: Our results suggest that: (1) acute changes in corticospinal measures returned to baseline in a shorter timeframe than the current super-compensation model (24-48 h) and (2) changes in corticospinal excitability post-HST may be modulated "downstream" of the primary motor cortex (M1).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Strength training of one limb increases corticomotor excitability projecting to the contralateral homologous limb.

The contralateral transfer of strength following unilateral strength training (ULS) is thought to be due to changes within the nervous system. Using transcranial magnetic stimulation (TMS) we compared corticospinal responses following ULS of the right biceps brachii (BB) projecting to the untrained left BB. Motor evoked potentials (MEPs) were recorded from both BB of 23 individuals pre and post...

متن کامل

Neurophysiologic Correlates of Aging-Related Muscle Weakness

38 Muscle weakness associated with aging implicates central neural degeneration. However, role of 39 the primary motor cortex (M1) is poorly understood despite evidence that gains in strength in younger 40 adults are associated with its adaptations. We investigated whether weakness of biceps brachii in aging 41 analogously relates to processes in M1. We enrolled 20 young (22.6±0.87 years) and 2...

متن کامل

Corticospinal Excitability Following Short-Term Motor Imagery Training of a Strength Task

Motor imagery andactualmovement engage similar neural structures, however, whether they produce similar training-related corticospinal adaptations has yet to be established. The aim of this study was to compare changes in strength and corticospinal excitability following shortterm motor imagery strength training and short-term strength training. Transcranial magnetic stimulation (TMS) was appli...

متن کامل

Motor skill training and strength training are associated with different plastic changes in the central nervous system.

Changes in corticospinal excitability induced by 4 wk of heavy strength training or visuomotor skill learning were investigated in 24 healthy human subjects. Measurements of the input-output relation for biceps brachii motor evoked potentials (MEPs) elicited by transcranial magnetic stimulation were obtained at rest and during voluntary contraction in the course of the training. The training pa...

متن کامل

Corticospinal facilitation following prolonged proprioceptive stimulation by means of passive wrist movement.

The purpose of this study was to evaluate the delayed effects of repetitive sensory stimulation with passive wrist movement on corticospinal excitability of the forearm and hand musculature. Motor evoked potential responses to single and double pulse transcranial magnetic stimulation were recorded from the flexor carpi radialis, extensor carpi radialis, and the first dorsal interosseous muscles...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2016